Unipro UD GENE

Решение практических задач с помощью UGENE

Пособие для школы-семинара молодых ученых «Вычислительные задачи молекулярной биологии и платформа UGENE»

30 мая - 2 июня 2011

Содержание

Соде	ржание	2
Введ	ение	3
Часть	ы. Знакомство с UGENE	4
1.	Общие сведения о UGENE	4
2.	Практическая задача: Исследование неизвестного вируса	5
3.	Практическая задача: Работа с данными секвенирования	11
4.	Практическая задача: Поиск гена в последовательности	15
5.	Практическая задача: Построение вычислительных схем	18
Часть	ы II. Запуск задач на кластере НГУ	26
1.	Где в UGENE прописать адрес кластера	26
2.	Как запустить схему на кластере	28
3.	Примеры схем	28
Часть	ы III. Работа с модулем Expert Discovery в UGENE	31
1.	Общие сведения о модуле Expert Discovery	31
2.	Практическая задача: Поиск комплексных сигналов на выровненной выборке	32
Заклн	очение	41

Введение

Данное пособие содержит вспомогательные материалы для решения практических задач, представленных на школе-семинаре «Вычислительные задачи молекулярной биологии и платформа UGENE».

Для запуска задач используется текущая сборка UGENE (r.643).

В первую часть пособия включено решение следующих практических задач:

1. Исследование неизвестного вируса:

В данной задаче исследуется последовательность неизвестного вируса. Рассматривается поиск гомологов с помощью удаленного запроса BLAST, загрузка последовательностей с NCBI, множественное выравнивание последовательностей, построение филогенетических деревьев.

2. Работа с данными секвенирования:

Делается краткий обзор работы с данными секвенирования (в формате BAM) с помощью UGENE Assembly Browser: просмотр данных, экспорт ридов в FASTA файл.

3. Поиск гена в последовательности:

Приводится пример поиска составного сигнала с помощью схемы UGENE Query Designer.

4. Построение вычислительных схем:

Рассматривается 2 примера построения вычислительных схем. Также рассматривается запуск схемы из командной строки и использование скриптов для задания значения параметра.

Во второй части пособия описывается необходимая информации о запуске схем на кластере НГУ. Приводятся примеры схем.

Третья часть пособия содержит описание и пример использования системы Expert Discovery, встроенной в UGENE, позволяющей размечать протяженные районы генов, отвечающие за регуляцию транскрипции.

Часть І. Знакомство с UGENE

1. Общие сведения о UGENE

Что такое UGENE

UGENE – свободное кроссплатформенное бионформационное программное обеспечение.

В UGENE интегрированы десятки известных биоинформационных инструментов и алгоритмов, доступных как через графический интерфейс, так и через командную строку.

Используя встроенный дизайнер вычислительных схем, различные инструменты и алгоритмы могут быть скомпонованы в вычислительную схему.

Чтобы узнать больше:

- <u>http://ru.wikipedia.org/wiki/UGENE</u>
- <u>http://ugene.unipro.ru/</u>

Где можно взять UGENE

Последнюю версию UGENE всегда можно свободно скачать со следующей страницы:

• <u>http://ugene.unipro.ru/rus/download.html</u>

На данной странице можно скачать пакеты для операционных систем Windows, Linux, Mac OS X, и др. Также доступен исходный код продукта (распространяется на условиях <u>GPLv2</u>).

Можно также скачать одну из последних "предрелизных" сборок UGENE:

• http://ugene.unipro.ru/rus/snapshot.html

Документация (на английском языке) доступна на следующей странице:

• <u>http://ugene.unipro.ru/documentation.html</u>

2. Практическая задача: Исследование неизвестного вируса

Что есть

Имеется ДНК последовательность некоторого неизвестного вируса в формате FASTA: "virus.fa".

Что требуется

Найти гомологи для данной последовательности, выровнять полученные последовательности и построить филогенетическое дерево.

Как это сделать

1. Открыть "virus.fa" в UGENE:

U-	* UGENE - [virus virus >		
<mark>%</mark> E	ile <u>A</u> ctions <u>S</u> ettings <u>T</u> o	ols <u>W</u> indow <u>H</u> elp _	a ×
: 🗖) 🗁 🔚 🗄 🖊 🔁 l 🖻	la la la la Co! R.1	• »
	Project X	🕑 virus X [dn 🖄 🔾 羚 🔝 🖓 🖬 🖌 🔹	~ ^
roject	Name filter	1 200 400 600 800 1k 1.2k 1.4k 1.647	Σ
1 1 1 1	Objects	empty	
	🖻 🚹 virus.fa	200 400 600 800 1k 1.2k 1.4k 1 647	
	🖙 🏷 [s] virus X		-
		Y L * P S L E N T	
		IFNPHWKT	P
			~
	Bookmarks	12 4 6 8 10 12 14 16 18 20 22 24 2	7 -
	🦾 🊖 virus virus X	ATAGAAATTGGGAGTAACCTTTTGTG	G
		I K L G * Q F V G	~
		Name	
		Auto-annotations [virus.fa virus X]	
			>
	2: Tasks	: Log No active tasks	2

- 2. Найти гомологи с помощью удаленного запроса **BLAST**:
 - Нажмите правую кнопку мыши и выберите "Analyze > Query NCBI BLAST database" в появившемся контекстном меню.

• Для того, чтобы начать поиск достаточно нажать "Search" в появившемся диалоге. При необходимости можно также задать параметры поиска, отличные от значений по умолчанию.

🗞 Search through a remote database	? 🛛
General options Advanced options	
Select the search type: blastn 💟 🗌 Search for short, nearly exact	ct matches
Expectation value 10.00 🗘 🗌 Megablast	
Max hits 20 🗘	
The database:	
Nucleotide collection - nr	~
The database description:	
primary biological sequence information, such as the amino-acid sequence different proteins or the nucleotides of DNA sequences. A BLAST search enables a researcher to compare a query sequence with a library or dat of sequences, and identify library sequences that resemble the query Save annotation(s) to	abase
Existing annotation table Annotations [MyDocument_28.gb]	✓ ▲
Create new table ents and Settings/oigl/MyDocument_29.0	gb
Annotation parameters	
Group name <auto></auto>	*
Search timeout	2 min 🗘
Search	Cancel

Внимание: Поиск производится в удаленной базе данных, поэтому для успешного выполнения данного пункта требуется доступность интернета. В случае отсутствия интернета, можете воспользоваться локальным поиском BLAST, описание которого не входит в данное пособие.

• После того, как поиск был начат, за ходом его выполнения можно следить, например, в нижней части окна UGENE:

- blast result blast result blast result blast result blast resul 100 200 300 400 500 600 700 800 900 1k [1645 bp]· E т F F s Y L * Ρ s \mathbf{L} Ν 1 Ι F Ν P н W ĸ т Р s F Р Ψ····Τ. G ĸ Ĥ ΤA Name Value 🖨 🚱 Annotations [MyDocument_28.gb] * ÷. 📁 misc_feature (0, 20) blast result 3..1647 blast result 3..1647 Ŧ blast result 3..1647 Ē blast result 3..1647 Ĥ
- По завершении поиска последовательность вируса будет проаннотирована:

• Чтобы посмотреть подробную информацию о каком-нибудь результате поиска, раскройте соответствующий узел дерева аннотаций:

🖨 🚱 Annotations [MyDocument_28.gb] *	
🖻 🧭 misc_feature (0, 20)	
🖨 🗖 blast result	31647
E-value	0
····· accession	EU594418
bit-score	2814.54
def	Hepatitis B virus strain 4653-97 polymerase
gaps	0/1645 (0%)
hit-from	206
hit-to	1850
id	gi 194772903 gb EU594418.1
···· identities	1611/1645 (97.93%)
···· score	3120
source_frame	direct
🖶 🗖 blast result	31647
🗊 🗖 blast result	31647

- 3. Загрузить последовательности гомологов из NCBI GenBank:
 - Для этого выделите аннотации в нижней части окна (называемой "Annotations Editor") как показано на рисунке ниже и выберите "Fetch sequences from remote database > Fetch sequences by 'id' from 'blast result'" в контексном меню:

🖨 - 🚱	Annot	tations [MyDoc	umer	nt_28.gb] *		
_	🥑 m	iisc_feature (0), 20)			
	🖻 🗖	blast result		31647		
	🖻 🗖 🗖	blast result		31647		
	🖻 🗖	blast result		31647		
	🚖 - 🗖	blast result		0.4643		
	💼 - 🗖	blast result	->	Go to position	Ctrl+G	
	🖻 🗖	blast result		Select sequence region	Ctrl+A	
	🖻 🗖	blast result	A.	New appotation	Ctrl+N	
	E 🗖	blast result	-0		Carina	
	🖻 🗖	blast result		Сору	•	
	Image: Contract of the second seco	blast result		Select	•	
	÷	blast result				
	Image: Second	blast result		Add	•	
	🖻 🗖	blast result		Analyze	•	
	🖻 🗖	blast result		Alian		
	🖻 🗖	blast result		Aign	,	
	Image: Contract of the second seco	blast result		Cloning	•	
		blast result		Fetch sequences from remote database	•	Fetch sequences by 'id' from 'blast result'
	<u>ا الم</u>	blast result		Evport		Earth annual hadron in the second second second
		blast result		Export	,	Fetch sequences by accession from blast result

• В появившемся диалоге можно выбрать папку, куда загрузить файлы. Оставьте включенной опцию "Add to project" и нажмите "OK":

🗞 Get sequences by ID 🛛 🔹 💽
The sequences from selected BLAST results will be downloaded from NCBI Genbank by their GI identifier
Save to directctory: and Settings/user/.UGENE_downloaded
Add to project
OK Cancel

• После того, как последовательности загрузятся, в проекте появится новый GenBank файл с этими последовательностями:

Project	×
Name filter	7
Objects	
🖨 👔 virus.fa	^
🖳 😽 [s] virus X	
🖨 🚻 MyDocument_28.gb	
🚱 [a] Annotations	
🖨 🎦 194772903_misc.gb	
🛛 🚱 [a] EU594418 features	
🗝 🗞 [s] EU594418 sequence	
💮 🚱 [a] EU594414 features	
🗝 🗞 [s] EU594414 sequence	_
💮 🚱 [a] EU594413 features	

Внимание: Для успешного выполнения данного пункта требуется доступность интернета.

- 4. Экспортировать последовательности в формат множественного выранивания:
 - Нажмите правой кнопкой мыши на файл с последовательностями и выберите "Export > Export sequences as alignment" в контекстном меню:

Project	× 🔍 Rest
Name filter	
Objects	
 virus.fa virus X MyDocument_28.gb Appotations 	
□ 194772903_misc.g □ 0 [a] EU594418 ft	Open view
(a) EU594414 fe	Unload selected documents
[s] EU594413 s [s] EU594429 f	Import
(s) EU594429 st	Remove Export sequences as alignment
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Save a copy

• В появившемся диалоге можно оставить значения параметров (имя файла множественного выравнивания и его формат) по умолчанию и нажать "Export":

U Export seque	ences as alignment	
Export to file	cuments and Settings/user/.UGENE_downloaded/194772903_misc.aln	
File format to use	CLUSTALW	*
Add document	to the project	
	Export Cancel	

- 5. Выровнять последовательности:
 - В контекстном меню множественного выравнивания выберите "Align > Align with MUSCLE":

-	G	Edit	•				A ^	C C	і т	' т	C C	
-	т	Align	•	М	Alig	in wit	th M	1US	CLE			
-	·	Tree	•	м	Alio	in se	aue	nce	s to	o pre	ofile	

• В появившемся "Align with MUSCLE" диалоге нажмите на кнопку "Align".

6. Построить филогенетическое дерево:

- Выберите "Tree > Build Tree" в контекстном меню множественного выравнивания: Colors сстстсс DQ219811 sequence AT Edit ΤТ DQ304549 sequence TAATCA ATCA DQ304550 sequence ТΤ Align ٠ G A ΤТ DQ304551 sequence Tree 🌾 🕑 Build Tree DQ399006 sequence AT ΤΤΑΤΑΑΑ Ь Statistics Þ DQ304547 sequence ΤТ TAATCA View DQ304548 sequence ΤТ AATC А т Export -----
- В диалоге "Build Phylogenetic Tree" нажмите "Build":

Build Phylogenetic Tree	? 🗙						
Tree building method	PHYLIP Neighbor Joining						
Distance matrix model	F84						
Gamma distributed rates across site	es						
Coefficient of variation of substitution	rate among sites 0.50 🗘						
Transition/transversion ratio	2.00						
Bootstrapping and Consensus Tree							
Number of replicates	100						
Seed (must be odd)	26409						
Consensus type	Majority Rule (extended)						
Fraction	0.50						
Save tree to d Settings/user/.UGENE_downloaded/194772903_misc.nwk Remember Settings Restore Default Build Cancel							

Для построения дерева использовуется метод "Neighbor Joining" с различными моделями для подсчета матрицы расстояний, реализованный в пакете <u>PHYLIP</u>. При построении дерева может быть применен бутстреп-анализ.

3. Практическая задача: Работа с данными секвенирования

Что есть

Имеются данные секвенирования в фомате BAM ("example-alignment.sorted.bam"), файл индекса ("example-alignment.sorted.bam.bai") и референтная последовательность ("example-sequence.fasta").

Что требуется

Отобразить имеющиеся данные, экспортировать часть данных в формат FASTA.

Как это сделать

- 1. Открыть UGENE.
- 2. Импортировать ВАМ файл:
 - В главном меню выберите "Tools > Import BAM File":

- В появившемся диалоге выберите файл "example-alignment.sorted.bam" и нажмите "Open".
- В диалоге "Import BAM File" нажмите "Import":

U Import BAM File			? 🗙
Source URL: Работа с данными с	еквенирования/exa	mple-alignment.sorted.bam	Info
Contig name	Length	URI	
1 🗹 Example sequence	10k		
Select All Deselect All Inve	rt Selection		
Destination URL: рта с данными	секвенирования/еха	ample-alignment.sorted.bam.u	genedb …
Add to project		Import	Cancel

Замечание: В данном примере импорт занимает мало времени. В реальной ситуации может потребоваться некоторое время для импорта данных.

- 3. Отобразить данные:
 - В следующем окне нажмите на первом регионе этот регион имеет максимальное покрытие короткими последовательностями ("ридами") в открытом контиге ВАМ файла.

• В открывшемся окне покрутите колесо мыши, чтобы увеличить данные:

Замечание: Сверху в окне отображается "Assembly Overview", оно показывает покрытие ридами всего контига или его части (то есть, "Assembly Overview" также можно приближать/удалять). Более подробно см. документацию по Assembly Browser.

• Чтобы узнать информацию о каком-нибудь риде подведите курсор мыши к нему:

A I	6 16	A	A.	A.	C	T D	10	10	Т		Т	G		Т	6	G	T	A	6		6	C	G (4	10	A	16.1	A I	C T	IC.	T	A.					T	G (ч т.	6		TE	6	C	T A	6 6	A 4	A T	G
A	c 6	A	A	A	۰.	т с	10	10	T	A	т	G	5 5	т	c.	G 1	т	A	6	T A	6	٥.	G A	10	A											T	G	τ.	6	т	TO	a 🛛	C 1	T A	6.0	A I	A T	G
A	C 6	A	A	A	۵.	т с	10	۰c	т	A	т	G	5 6	т	C.	G 1	Т	A	6	T A	G.	٥.	G A	10	A	C	A I	C T	10	т	A.											G	C 1	T A	6 6	A a	A T	G
	C 6	A	A	A	۰.	т	10	۰¢	т	A	т	G	5 6	т	ς.	6	Т	A	6	T A	G	с.	G A	10	A	C	A I	C 7	10	т	A	G C	: 6	ς.	T /	T	G /	т	G									
	C 6	A	A	A	۵.	т с	10	۰c	т	A	т	G	5 6	т	C.	G 1	Т	A	6	T A	G.	с.	G A	10	A	C	A I	с т	10	т	A	G (: 6	ς.	Τ,	т	G /	ч	G									- 1
1	6	A	A	٨	с.	T G	10	, C	т	A	т	G	5 6	Т	C.	G 1	Т	A	6	T A	G	ς.	G A	6	A	C	A	C T	10	т	A	6 0	: 6	0	T /	T	G /	I T	G									
		A	A	A	۵.	T G	10	10	T	4	T.	G	6	T	c.	6		4	6		6	с.	<u>, </u>	- 6		C .	4	c 🗖	10	T	4	6.7	- 7	10	T.	1	6	T.	6	T .								-
				A	۹,	т	6	¢	3	3	43	2	Fv	a	m	nl	-	se.	â	ie	ne	ie.	F	W	A	ŝe	ėc	ioi	nc	là	PV.	í é	e	ai	e	10	a 7	70	59									
					۹.	т р	10	10	-	1			-	-		÷.,	-	1	4.	1		1	12 A				8			-	2	0.1		4.	-		5.7	-										
						G	C	¢	F	r	on	n i	70	20)t	0	70	68	3 F	ł٥	W	:2	6		A																							
										•	n /	۰ŧ	h.	Δ																																		
									15	C	шç	"																																				
									C	ïc	ja	r:	4	91	1																																	
									c	4	-	-	d.	di	-	-+																																
									-		a		ч.	u																																		
									F	le	a	d	se	q	ue	'n	ce	: (CG	A	4A	C	TG	C	CI	AT	G	GG	GT	C	GΤ	TA	١G	TA	G	CG/	AC	AC	CAG	CT	CT/	AG	GCG	GC	TAT	۲G/	ATG	i i
									_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	÷

4. Добавить референтную последовательность:

- Откройте " example-sequence.fasta" в UGENE.
- Перетащите последовательность в "Reference Area":

5. Экспортировать данные в FASTA:

• Выберите "Export > Visible reads" в контекстном меню:

• В появившемся "Export Reads" диалоге введите имя файла в поле "Export to file" и нажмите кнопку "Export". Файл, содержащий видимые риды, добавится к проекту.

4. Практическая задача: Поиск гена в последовательности

Что есть

ДНК последовательность Escherichia_coli ("NC_000913.gb").

Что требуется

Найти в последовательности и аннотировать места, где потенциально может находиться ген.

Как это сделать

1. Запустить Query Designer в UGENE:

Чтобы открыть окно Query Designer выберите "Tools > Query Designer" в главном окне UGENE.

2. Открыть схему поиска гена:

• Выберите вкладку "Samples":

• Дважды щелкните мышью на "SimpleGene", чтобы открыть схему.

3. Задать параметры схемы:

В данной схеме достаточно задать модель для поиска сайтов связывания транскрипционных факторов.

- Выберите элемент схемы "TFBS".
- Справа в параметрах нажмите на значение параметра "Model":

Parameters —		
Name	Value	2
Min score	88%	
Min Err 1	0.20	
Max Err2	0.001123	
Model		

• Нажмите на кнопку "…", выберите модель "AgaR.sitecon.gz" в открывшемся диалоге и нажмите "Open".

ፉ Query Designer - SimpleGe	ne			
Elements Groups Samples	t 102010200 bp	1	Property Editor	TFBS
🧐 CDD BaseContent	Order: 2 Order: 3 Finds ORFs in drect strand using the 1. The Standard Genetic.		Annotate As Direction	tfbs Any
HMM3	binding sites (TFBS) with profile provided by <u>ApaR, sitecon.oz</u>		Sitecon : Sea transcription f significantly si	arches for actor binding sites milar to specified iles. In case
······································	0150 bp		Parameters Name	Value
····· 🔀 Repeats			Min Err 1 Max Err 2	0.20 0.001123
🕰 Pattern			riouer	intisitetoinigz
SW Smith-Waterman				
Constraints End-Start			Model : Profil with.	le data to search
Start-End		~		

4. Запустить схему на выполнение:

- Нажмите кнопку 上 на панели задач.
- В "Run Schema" диалоге загрузите последовательность "NC_000913.gbk", укажите имя для файла с результатами:

🚧 Run Schem	a 🦳 🔀
Load sequence	акомство с UGENE/4. Поиск гена в последовательности/NC_000913.gbk
Save results to	result.gb
	Add to project
	Run Cancel

• Нажмите "Run".

5. Посмотреть результаты:

После того, как схема выполнится откроется новое окно Sequence View, содержащее данную последовательность:

U -* UGENE - [NC_000913 NC_000913 sequence]	
℅ Eile Actions Settings Tools Window Help	_ [_] 8
: 🗔 🗁 🖼 ! 🚜 🗮 Ta Da Ta Da Ta I	Go! 🖉 - 1:1 - 🏘 👯 🤜 📻 🔯 決 🐹 🎭 👪 🖬 🌚 - »
t i i i i i i i i i i i i i i i i i i i	
0 1 500k 1m 1.5m	2m 2.5m 3m 🔺 3.5m 4m 4 639 221 🖆
CDS (3611) NP 417603.1X NP 417604.1	NP 417605.1 NP 417606.1 NP 417607.1 NP 4
ORF (1)	ORF
gene (2)	
agaV	
gene (3717) agaW agaA	agaS (agaY) agaB)agaC
rRNA (22)	
tRNA (86)	
tata-box (1)	
tata-box (1)	
tfbs (3)	
3 277 889 3278.5k 3279k 32/9.5k	3280k 3280.5k 3281k 3281.5k 3282 496
<	
* K R Q R P T S S	S S D * G L S Y A R K L H P C
SESDNARQV	HQTKD*V <mark>MPENYTP</mark>
V K A T T P D V K E	IRLRIELCQKITPL
GTGAAAGCGACAACGCCCGACGTCAAGT1	CATCAGACTAAGGATTGAGTTATGCCAGAAAATTACACCCCTG
<u>3 279 567</u> <u>3 279 575</u> <u>3 279 575</u> <u>3 279 575</u> <u>3 279 575</u> <u>3 27</u>	3279.6k 3279610 3279620 3279630 3 279 638
SLSLARR*T	* * V L S Q T <i>I</i> G S F * V G A
HFRCRGVDLE	D S * P N L * A <i>L</i> F N C G Q
T F A V V G S T L N	M L S L I S N H W F I V G R
<	
Name	A Value
• OC_000913 features [NC_000913.gbk]	
🖻 🔮 result.gb [result.gb]	
Result 1 (0, 3)	3279617 3280768
■ tata-box	32795143279517
🕀 🗖 tfbs	32794593279486
🖻 🤒 Result 2 (0, 3)	
tata-box	3279514 3279517
⊞ tfbs	32794903279517
🖶 👰 Result 3 (0, 3)	
⊕	
🐨 💓 Result 5 (0, 3)	
2: Tasks 12: Log	No active tasks 💡 📔

Найденные результаты сохранялись как аннотации в файле result.gb:

ian 🚱 result.gb [result.gb] ian 🧐 Result 1 (0, 3)	
	32796173280768
🗖 🗖 tata-box	32795143279517
🗎 🗖 tfbs	32794593279486
🖨 🧭 Result 2 (0, 3)	
🖶 🗖 ORF	32796173280768
🗆 🗖 tata-box	32795143279517
🗎 🗖 tfbs	32794903279517
🖶 💯 Result 3 (0, 3)	
🖶 💯 Result 4 (0, 3)	
🖶 🧐 Result 5 (0, 3)	
🖮 🧭 Result 6 (0, 3)	

5. Практическая задача: Построение вычислительных схем

Что есть

- 1. Приходится часто вручную выполнять множественное выравнивание набора последовательностей.
- 2. Стоит задача разделить multi-FASTA файл со множеством последовательностей на отдельные FASTA файлы.

Что требуется

- 1. Автоматизировать первую задачу запускать ее из командной стоки, задавая имена файлов как параметры.
- 2. Решить вторую задачу. Обеспечить возможность ее автоматизации.

Как сделать 5.1

Чтобы автоматизировать множественное выравнивание последовательностей надо:

1. Запустить Workflow Designer в UGENE:

Чтобы открыть окно Workflow Designer выберите "Tools > Workflow Designer" в главном окне UGENE. Откроется следующее окно:

- 2. Открыть схему-пример "Align sequences with MUSCLE" :
 - Выберите вкладку "Samples":

• Дважды щелкните мышью по "Align sequences with MUSCLE" (см. вверху). Откроется следующая схема:

Замечание: В данном примере рассматривается выравнивание с помощью MUSCLE, однако доступны и другие элементы схемы для множественного выравнивания последовательностей — выравнивание с помощью ClustalW, Kalign и др.

3. Запустить схему из графического интерфейса: (этот пункт можно пропустить)

Для проверки, что схема работает попробуем запустить ее из графического интерфейса.

• Выберите элемент "Read alignment" и в параметрах (справа) нажмите на поле значения параметра "Input files", нажмите на появившуюся кнопку "…" :

Parameters —		
Name	Value	
Input files	()

 В появившемся диалоге выберите один или несколько файлов в формате множественного выравнивания, например можно использовать файл "\$UGENE \data\samples\CLUSTALW \COI.aln". Здесь "\$UGENE" – директория куда был установлен UGENE, например на Windows это соответствует "C:\Program Files\Unipro UGENE\data\samples\CLUSTALW\COI.aln".

- Точно так же выберите элемент "Write Stockholm" и укажите какое-нибудь имя файла результата (параметр "Output file").
- Нажмите кнопку и на панели задач схема корректна, ошибок при ее валидации не возникло:

- Нажмите "OK" в "Schema is valid" диалоге
- Нажмите кнопку 본 на панели задач чтобы запустить схему.
- Когда схема выполнится нажмите на отчет в правом нижнем углу окна:

• Открывшийся отчет содержит ссылку на файл с результатом:

4. Отредактировать параметры запуска схемы из командной строки:

Итак, схема запускается из графического интерфеса, теперь зададим "алиасы" для параметров схемы, то есть названия параметров, которые будут использоваться при запуске схемы из командной строки.

• Нажмите на кнопку 📕 на панели задач.

• В появившемся диалоге "Configure command line aliases" для параметра "Input files" элемента "Read alignment" задайте алиас "in":

ł	Configure com	mand line aliases		? 🛛
	Workflow elements			
	Read alignment	Schema parameter	Command line alias	Help message
	Write Stockholm	Input files	in	
			Ok	Cancel

• Выберите элемент "Write Stockholm" и задайте алиас "out" для параметра "Output file":

Configure command	line aliases		? 🗙
Workflow elements			
Read alignment	Schema parameter	Command line alias	Help message
Write Stockholm	Accumulate objects		
	Output file	out	
	Existing file		
		Ok	Cancel

- Нажмите "Ok".
- Нажмите на кнопку 脑 на панели задач чтобы сохранить схему.

• В диалоге "Workflow properties" задайте "Location" (где будет сохранена схема):

😵 Workf	low properties		? 🗙
Location	C:/my_schema.uwl		
Name	Align sequences with MUSCLE	_ (ОК
Comment	Performs multiple sequence alignment with MUSCLE algorithm and saves the resulting alignment to Stockholm document. Source data can be of any format containing sequences or alignments. To use this schema, you need to specify locations for input and output file(s). To do this, select a corresponding task, so its' parameters appear in Property Inspector panel, and specify desired value(s) for "URL" parameter. Then you can launch the schema with pressing Ctrl+R kevs.	•	Cancel

• Нажмите "ОК".

5. Запустить схему из командной строки:

- Откройте командную строку (например, в Windows можно запустить "cmd").
- Для простоты примера положим "COI.aln" на диск "С:".
- Запустите следующую команду:

ugene --task="путь к схеме" --in="входной файл" --out="выходной файл", то есть:

ugene --task="C:\my_schema.uwl" --in="C:\COI.aln"--out="C:\COI_aligned.sto"

• Теперь можно открыть выходной файл "COI_aligned.sto" в UGENE.

Как сделать 5.2

- 1. Запустить Workflow Designer в UGENE.
- 2. Перетащить необходимые элементы на сцену:

В данной схеме нам потребуется считывать последовательности и записывать их (будем записывать их в формате GenBank), поэтому перетащите элементы "Read sequence" и "Write Genbank":

3. Соединить элементы:

Считываемые последовательности необходимо перенаправить на запись. Для этого соедините выходной порт элемента "Read sequence" с входным портом элемента "Write Genbank":

- 4. Задать с помощью скрипта имена выходных файлов:
 - На панели задач выберите значение "Show scripting options" для "Scripting mode":

Scri	pting mode.
	Hide scripting options
~	Show scripting options

• Выберите элемент "Write Genbank" на схеме и в параметрах в колонке "Script" выберите значение "user script" для параметра "Output file":

Name	Value	Script	
Accumulate objects	True	N/A	
Dutput file		no script	~
xistina file	Rename	no script	
		user script	

 В появившемся диалоге "Script editor" введите: "url="C:/fasta_files/" + getName(sequence) + ".gb";"

Script editor	? 🛛
Used script	
Script text	
var annotations; // Set of annotations var sequence; // Sequence var url; // Location var url_out; // Output file	
url="C:/fasta_files/" + getName(sequence) + ".gb";	
Check syntax Save	Line: 1
Clear Save as	Done Cancel

• Нажмите "Done" чтобы сохранить настройки и закрыть диалог.

5. Задать входные данные:

Выберите элемент "Read sequence" и укажите входной multi-FASTA файл (или несколько файлов) в параметре "Input files".

Parameters	
Name	Value
Input files	: вычислительных схем/fasta-example.fa 🛄
Mode	Split

6. Выполнить схему:

- Нажмите кнопку 上 на панели задач чтобы запустить схему.
- После выполнения схемы файлы последовательностей будут находиться в указанной в скрипте папке: "C:\fasta_files\".

Часть II. Запуск задач на кластере НГУ

В этот разделе будут приведены краткие сведения о запуске задач на кластере НГУ.

Чтобы запустить задачу на кластере надо:

- 1. Создать соответствующую вычислительную схему с помощью Workflow Designer.
- 2. Прописать адрес кластера в UGENE.
- 3. Запустить схему из Workflow Designer на удаленное выполнение.

Описание пункта 1 не входит в данный раздел, однако ниже будут приведены несколько задач с примерами схем. Остальные два пункта описаны ниже.

1. Где в UGENE прописать адрес кластера

В главном окне UGENE выберите "Settings > Remote machines monitor":

Появится "Remote machine monitor" диалог:

U Remote machine monitor	? 🛛
Url Server Name Ping Auth	Add
^L http://184.73.180.209:80/rservice/engine Web transpo ? ?	Remove Modify Test Connection Show User Tasks
Events log	
[DETAILS][23:08] Found 1 remote machine records	
Get Public Machines OK	Cancel

Нажмите кнопку "Add" и введите следующее значение в появившийся диалог: "https://ugene.unipro.ru/fcp/remote/rservice/engine"

U Rem	note machine configuration	? 🗙
URL:	https://ugene.unipro.ru/fcp/remote/rservice/engine	
Acc	count information	
0	Existing account	
	User name:	
	Password Remember m	ie
۲	Guest account	
	OK Canc	el

Вы можете зарегистрироваться на сервисе " https://ugene.unipro.ru/fcp/remote/user" и указать в "Remote machine configuration" диалоге данные своего аккаунта (см. "Existing account"). Тогда запускаемые задачи можно будет отслеживать с помощью этого сервиса.

После нажатия кнопки "ОК" в диалоге "Remote machine monitor" появится новая запись:

U	Remote machine monitor				? 🔀
	Url	Server Name	Ping	Auth	Add
	https://ugene.unipro.ru/fcp/remote/rservice/engine	Web transport pr FCP server	¥ •	*	Remove Modify Test Connection Show User Tasks
I	Events log				
	[DETAILS][23:08] Found 1 remote machine records [DETAILS][23:18] Retrieving remomote machine info [DETAILS][23:18] Starting remote service ping task, tas [DETAILS][23:18] Remote service ping task finished, ta	sk-id: 5836 sk-id: 5836			
	Get Public Machines			ОК	Cancel

Нажмите "ОК" чтобы закрыть диалог. Указанные настройки будут сохранены даже после перезапуска UGENE.

2. Как запустить схему на кластере

Откройте схему в Workflow Designer. На панели задач задайте значение "Run mode" равным "Remote machine".

e,	Run	mode_ Scr	ipting mod
		Local host	Γ
	~	Remote ma	chine

Нажмите на кнопку *к*, также расположенную на панели задач, чтобы запустить схему. Появится "Remote machine monitor" диалог. Выберите в нем введенный раннее адрес кластера и нажмите "Run":

U Remote machine monitor			? 🛛
Url http://184.73.180.209:80/rservice/e https://ugene.unipro.ru/fcp/remote/	Servi Pir engine W ? rservice/engine W ?	ng Auth	Add Remove Modify Test Connection Show User Tasks
Events log			
[DETAILS][17:43] Found 2 remote mad	hine records		
Get Public Machines		Run	Cancel

3. Примеры схем

Пример 1. Поиск гена

Данные:

annotate_with_uql.uwl	Схема для запуска.
hs_ref_chr19_region_7mb.fa.gz	Входная последовательность, часть человеческой хромосомы 12.
simple_gene.uql	SimpleGene схема из примеров Query Designer с выбранным моделью Eklf.

Алгоритм запуска:

- Откройте схему "annotate_with_uql.uwl".
- Укажите входной файл "hs_ref_chr19_region_7mb.fa.gz" (параметр "Input files" элемента "Read sequence").
- Укажите UQL схему "simple_gene.uql" (параметр "Schema" элемента "Annotate with UQL").
- Укажите выходной файл, например "result.gb" (параметр "Output file" элемента "Write Genbank").
- Запустите схему удаленно (см. описание выше).

Замечание: В Query Designer схеме путь к SITECON модели (например Eklf) должен быть прописан как путь на кластере.

Пример 2. Выравнивание с помощью MUSCLE

Данные:

muscle.uwl	Схема для запуска.
Fungi.aln	Множественное выравнивание.

Алгоритм запуска:

- Откройте схему "**muscle.uwl**".
- Укажите входной файл "Fungi.aln" (параметр "Input files" элемента "Read alignment").
- Укажите выходной файл, например "result.aln" (параметр "Output file" элемента "Write alignment").
- Запустите схему удаленно (см. описание выше).

Пример 3. Поиск паттерна

Данные:

sw_search.uwl Схема для запуска.

hs_ref_chr19_region_7mb.fa.gz ДНК последовательность в формате FASTA.

Алгоритм запуска:

- Откройте схему "sw_search.uwl".
- Укажите входной файл "hs_ref_chr19_region_7mb.fa.gz" (параметр "Input files" элемента "Read sequence").

- Укажите выходной файл, например "result.gb" (параметр "Output file" элемента "Write Genbank").
- Запустите схему удаленно (см. описание выше).

Пример 4. Выравнивание ридов

Данные:

genome_aligner.uwl	Схема для запуска.
NC_008253.fna	Референтная последовательность (расположена на кластере).
e_coli_10000snp.fa	 Короткие последовательности или риды.

Алгоритм запуска:

- Откройте схему "genome_aligner.uwl".
- Укажите входной файл с ридами " e_coli_10000snp.fa " (параметр "Input files" элемента "Read sequence").
- Укажите выходной файл, например "result.sam" (параметр "Output file" элемента "Write alignment").
- Запустите схему удаленно (см. описание выше).

Замечание: Для того чтобы минимизировать объем передаваемых данных при запуске схемы, референтная последовательность была заранее загружена на кластер. В дальнейшем планируется расширять библиотеку доступных референтных геномов и предоставить пользователю возможность загружать их вручную.

Пример 5. Поиск BLAST

Данные:

blast_nr.uwl Схема для запуска. 1CF7_region.fa Аминокислотная последовательность в формате FASTA.

Алгоритм запуска:

- Откройте схему "blast_nr.uwl".
- Укажите входную последовательность "1CF7_region.fa" (параметр "Input files" элемента "Read sequence").
- Укажите выходную последовательность, например "result.gb".
- Запустите схему удаленно (см. описание выше).

Часть III. Работа с модулем Expert Discovery в UGENE

1. Общие сведения о модуле Expert Discovery

Что такое Expert Discovery

Система Expert Discovery позволяет исследовать и аннотировать протяженные районы генов, отвечающие за регуляцию транскрипции, в частности, находить сайты связывания различных транскрипционных факторов.

Для исследования регуляторных областей применяются так называемые "комплексные сигналы". Комплексный сигнал может быть представлен в виде дерева, состоящего из "элементарных сигналов" и условий, например:

Элементарным сигналом может является некоторая короткая последовательность или в частном случае буква, как например показано на рисунке ('A', 'G', 'T', 'A', 'G', 'T').

Условие, накладываемое на сигналы может быть одним из следующих:

- **Distance:** Задано *min* и *max* расстояние между сигналами (элементарными или комплексными).
- **Repetition:** Сигнал должен повторяться от *N_{min}* до *N_{max}* раз. Задано также *min* и *max* расстояние между соседними повторами.
- Interval: Сигнал должен находиться в интервале от *min* до *max*.

Также при работе программы задается три набора выборок последовательностей:

- **Позитивные:** в данных последовательностях комплексный сигнал должен присутствовать.
- Негативные: в данных последовательностях комплексный сигнал отсутствует (с определенной долей вероятности).
- Контрольные: последовательности, проверяемые на наличие комплексного сигнала.

Таким образом, обнаруживаются комплексные сигналы, отличающие позитивную выборку от негативной. Частота встречаемости каждого сигнала в позитивной выборке значимо

отличается от таковой в негативной выборке. Качество полученных сигналов проверяется на контрольной выборке.

Где можно взять Expert Discovery

Большая часть функциональности оригинальной программы "ExpertDiscovery" встроена в UGENE в качестве модуля "Expert Discovery" (альфа версия).

Оригинальная версия программы "ExpertDiscovery", а также статьи и документация по ней доступны по следующей ссылке: <u>http://www.math.nsc.ru/AP/ScientificDiscovery/index.html</u>

2. Практическая задача: Поиск комплексных сигналов на выровненной выборке

Что есть

Позитивные ("positive_learning.fa"), негативные ("negative_learning.fa") и контрольные ("control.fa") последовательности в фомате FASTA.

Что требуется

Обучить программу отличать объекты позитивной выборки от объектов негативной выборки. Комплексные сигналы необходимо автоматически сгенерировать из букв, и применить их совокупность к контрольным последовательностям (процедура распознавания).

Как это сделать

1. Запустить Expert Discovery в UGENE:

Чтобы открыть окно Expert Discovery выберите "Tools > Expert Discovery (alpha)" в главном окне UGENE.

2. Загрузить выборки:

- Выберите кнопку 🛅 на панели инструментов.
- В появившемся диалоге "Positive and Negative sequences" выберите файлы с позитивной и негативной выборками:

U Positive and Negative	sequences ?X
File with positive sequences	рвненной выборке/positive_learning.fal
File with negative sequences	зненной выборке/negative_learning.fa
	Ok Cancel

• В следующем диалоге "Positive and Negative sequences markup" нажмите "Cancel", так как в данном примере комплексные сигналы будут сгенерированы автоматически.

3. Выбрать буквы в качестве элементарных сигналов:

Для этого нажмите правой кнопкой мыши на пункте "Markup" в окне Expert Discovery и выберите "Markup letters" в появившемся контекстном меню:

- 4. Показать последовательности: (этот пункт можно пропустить)
 - Чтобы показать первые последовательности в позитивной выборке, выберите "Show sequences" в контекстном меню "Positive":

- Чтобы добавить еще "незагруженную" последовательность дважды щелкните мышью на ней.
- Выберите, например, букву (т.е. в данном случае элементарный сигнал) 'G' в "Markup > _LETTERS_". Все буквы 'G' отображаются на последовательностях в виде аннотаций:

Замечание: Обратите внимание на то, что выборка выровнена.

- 5. Создать сигнал вручную: (этот пункт можно пропустить)
 - Выберите "New signal" в контесном меню "Complex signals":

• Щелкнуте дважды мышью на имени созданного комплексного сигнала и переименуйте его в "consensus":

Editor	
Name	NewSignal
INdiffe	Newsignar

• Выберите подпункт "Undefined" для созданного сигнала:

• Ниже задайте тип "Interval", а также значения "2" и "6":

Editor	
Туре	Interval 🗸
Distance from	2
Distance to	6 🗸

• На втором уровне вложенности задайте слово "SAAGG" (в 15-символьном коде):

• Выберите созданный комплексный сигнал чтобы отобразить заданное слово в указанном интервале:

U Expert Discov	rery														
Items		signal (1)	_		signal									~
 Sequences Positive Negative 	•		2 T	3 C	4 A	5 A	6 G	7 G	°C C	9 T	10 A	11 A	12 G	13 A	
🕞 💞 Markup		Ø \$369	7; [dna]						"2 🛙	C⇔	T≣ T <u>r</u>	۵ 🛋	۹ 🛄	. 🔍 📑	~
B C _LETTER 00 A 00 C 00 C	s_	signal (1 1 T) 2 T	3 C	4 A	signal 5 A	6 G	7 G	8 T	9 C	10 C	11 C	12 A	13 A	
© T ⊕ -1- Complex sign	nals	@ S481	D; [dna]						* 2 C	Ctt	T≣ T <u>r</u>	۵.	्	. 🔍 📑	
É <mark>S consens</mark> É () Inte └ (€) :	us rval from 2 to 6 SAAGG	signal (1 1 G) 2 G	3 C	4 A	signal 5 A	6 G	7 G	° C	9 C	10 A	11 C	12 T	13 A	
Editor		Ø \$593	B; [dna]						*	Cth	T≣ ™ <u>r</u>	۱ ک	् 🔍	. 🔍 📑	
Name	consensus	signal (1)	3	4	signal	6	ż	8	9	10	11	12	13	
Description		<	C	C	A	A	G	G	C	T	C	T	T	G	
General information	on	@ S704	6; [dna]						*	Ctt	Tê T <u>r</u>	10 🔍	୍ 🔍 🔛	. 🔍 卦	
Probability	90% (9/10)	signal (1)	3	4	signal 5	6	ź	8	9	10	11	12	13	_
Pos. coverage	90% (9/10)	G	C	C	A	A	G	G	C	C	C	T	C	A	
Neg. coverage	1%(1/100)	Signal (1	B; [dna]			signal			* 2 C	Cth	Tā Tr	100 💐		. 🔍 📥	
Fisher	2.13231e-11	1 G	2 G	3 C	4 A	5 A	6 G	7 G	8 T	9 C	10 A	11 C	12 C	13 C	
		@ S833	9; [dna]						💙 🛙	C 🖶	TI T <u>r</u>	۵.		. 🔍 📑	
		signal (1) 2	3	4	signal 5	6	7	8	9	10	11	12	13	
		Name	-		-	-	-	-	^ Value		-	-	-	-	
			uto-anno	tations [N	legative legative	S3992; _N1 S3992; N1	L_H100_	W1;] /1:]							
		<													>

6. Автоматически сгенерировать сигналы:

• Создайте новую папку для комплексных сигналов (выберите "New folder" в контексном меню "Complex signals" чтобы сделать это) и переименуйте ее в "Generated":

- Нажмите кнопку 蕝 на панели задач.
- В появившемся диалоге "Extractor Parameters setup" измените значение параметра "Condition probability level" на "70", отметить галочку "Check minimization of Fisher criteria":

U Extractor Parameters setup	? 🛛
Setup algorithm parameters This wizard will help you automaticaly extract co sequences.	omplex signals from
Please fill in selection parameters	
Condition probability level	70
Coverage bound	25
Fisher criteria level	0.05
Check minimization of Fisher criteria	
Store only signals with different behaviou	r
Minimal Complexity	1
Maximal Complexity	5
< <u>B</u> ack	Next > Cancel

Параметры в этом диалоге имеют следующее значение:

Condition probability level – порог условной вероятности, P = a11 / (a10 + a11), где a11 - общее количество реализаций сигнала на позитивной выборке, a10 - общее количество реализаций сигнала на негативной выборке.

- *Coverage bound* уровень покрытия. Задает ограничение на количество реализаций сигнала на позитивной выборке. Например, в данном случае (см. выше) комплексный сигнал будет учитываться в случае, если он встретится более чем на 25 процентах позитивных выборок.
- Fisher criteria level порог уровня статистической значимости по точному критерию Фишера. Показывает на сколько статистически значим сигнал, то есть на сколько велика вероятность случайного возникновения данного сигнала.
- *Check minimization of Fisher criteria* минимизировать уровень статистической значимости сигнала.

- Store only signals with different behavior отсеиваются сигналы с одинаковым поведением на выборках, то есть если 2 комплексных сигнала встречаются одинаковое количество раз на позитивных и негативных выборках, то второй сигнал не учитывается. Опция применяется чтобы избежать дублирования результатов когда один и тот же комплексный сигнал может быть представлен с помощью разных деревьев.
- *Minimal complexity* минимальная сложность комплексного сигнала. Соответствует минимальному количеству элементарных сигналов в дереве комплексного сигнала.
- *Maximum complexity* соответственнор, максимальная сложность комплексного сигнала.
- Нажмите "Next".
- В появившемся окне дважды нажмите кнопку "Distance" чтобы добавить 2 предиката расстояния.
- Выберите первый созданный предикат и задайте значение "0" для параметров "Distance from" и "Distance to" (предварительно убрав галочку "Unlimited").
- Для второго предиката задайте значение "1" для обоих свойств:

U Extractor Parameters setup	?	×
Setup predicates Please create some predicates that will be used in complex signal co process.	onstruction	
Distance Distance from 0 to 0 taking into account order Distance from 1 to 1 taking into account order Repetition Interval	Distance Repetition Interval	
	Delete	
✓ Aligned		
Editor Distance from 0 Distance to 0 V Take order into account		
< <u>B</u> ack <u>N</u> ext >	Cancel	

- Оставьте отмеченной галочку "Aligned", чтобы при анализе учитывать, что выборки выровнены (см. также пункт 4 данной практической задачи).
- Нажмите "Next".
- В следующем окне выберите ранее созданную папку "Generated":

U Extractor Parameters setup				
Select folder Select folder to store extracted complex signals				
Generated				

- Нажмите "Finish".
- Отсортируйте комплексные сигналы по степени покрытия (выберите "Sort > Field > Coverage" в контексном меню "Complex signals"):

E Complex signals	New folder	C	Ť	ð	3 4 C A	
Generated	New signal	0.00	co7. [d==]			
⊕ ⑤ NewSign ⊕ ⑤ NewSign	Select all signals	iona	697; [dna]			3
🕀 🗐 NewSign	Deselect all signals	1	2		3 4	
⊕ ⑤ NewSign	Sort 🕨		Order 🕨		C A	
	5		Field 🕨		Coverage	
🕀 🗐 NewSignal 11		siana	(1)		Fisher	
世 ⑤ NewSignal14 中 ⑤ NewSignal15		3igilia 	2		Name	F
I I I I I I I I I I I I I I I I I I I	~	G	Ĝ	•	Probability	

Замечание: Обратите внимание, что среди сигналов с наибольшим покрытием есть автоматически выделенный сигнал, который размечает ту же область, что и тот, который был создан вручную.

7. Загрузить контрольную выборку:

- Выберите кнопку 陷 на панели задач.
- В появившемся диалоге выберите файл с контрольными выборками:

ыборке/control.fal Ok Cancel
(

• Нажмите "ОК".

8. Установить порог распознавания:

- Выберите кнопку 📥 на панели задач.
- Установите значение "10" для "Recognition Bound". В этом окне можно следить за величиной ошибок первого и второго рода для текущего порога.

U Setup Recognition Bound		? 🛛
Recognition Bound	10.000000	\$
Probability of negative sequence	recognition:	0
Probability of positive sequence re	ejection:	0
	ОК	Cancel

• Нажмите "ОК".

9. Сгенерировать отчет:

• Выделите все сгенерированные сигналы, выбрав пункт "Select all signals" в контексном меню папки "Generated":

Complex signals Sconsensus Generated						
•	New folder					
-		New signal				
D		Delete				
₽		Select all signals				
	Deselect all signals					

- Выберите кнопку 📓 на панели задач.
- Укажите имя файла отчета в появившемся диалоге. Отчет будет сохранен в формате HTML.
- Откройте отчет с помощью браузера (например Internet Explorer):

Control base

Total sequences: 9 Recognized sequences: 4 Sequences with zero score: 0 Details:

Sequence No	Sequence Name	Score	Result
1	\$4929;	3.98898	Not recognized
2	\$3292;	19.4139	Recognized
3	\$3986;	39.3105	Recognized
4	\$4803;	4.80811	Not recognized
5	\$2638;	68.7333	Recognized
6	\$2639;	5.59842	Not recognized
7	\$5938;	23.0181	Recognized
8	\$6368;	2.19722	Not recognized
9	\$8076;	5.59842	Not recognized

Заключение

В данном пособии представлены лишь некоторые из возможностей UGENE, из числа тех что показались нам актуальными для представления на школе-семинаре. Многие темы упомянуты вскользь, другие вовсе не затронуты (например, клонирование или работа с хроматограммами).

Мы постоянно стремимся сделать наш продукт более доступным для пользователей и предлагаем воспользоваться нашими ресурсами для более полного знакомства с UGENE:

- Документация UGENE (<u>http://ugene.unipro.ru/documentation.html</u>)
- Подкаст UGENE (<u>http://ugene.unipro.ru/rus/podcast.html</u>)
- Форум (<u>http://ugene.unipro.ru/forum/</u>), в том числе на русском языке (<u>http://ugene.unipro.ru/forum/YaBB.pl?board=russian</u>)
- Система контроля задач UGENE (<u>https://ugene.unipro.ru/tracker</u>)

Вопросам и предложениям всегда рады по адресу <u>ugene@unipro.ru</u>.